# Question

A complex machine is able to operate effectively as long as at least 3 of its 5 motors are functioning. If each motor independently functions for a random amount of time with density function f (x) = xe−x, x > 0, compute the density function of the length of time that the machine functions.

## Answer to relevant Questions

If X1, X2, X3, X4, X5 are independent and identically distributed exponential random variables with the parameter λ, compute (a) P{min(X1, . . . ,X5) ≤ a}; (b) P{max(X1, . . . ,X5) ≤ a}. If U is uniform on (0, 2π) and Z, independent of U, is exponential with rate 1, show directly (without using the results of Example 7b) that X and Y defined by X = √2ZcosU Y = √2ZsinU are independent standard normal ...The joint probability density function of X and Y is given by f (x, y) = 6/7(x2 + xy/2) 0 < x < 1, 0 < y < 2 (a) Compute the density function of X. (b) Find P{X > Y}. (c) Find P{Y > 1/2|X < 1/2}. Suppose that Xi, i = 1, 2, 3 are independent Poisson random variables with respective means λi, i = 1, 2, 3. Let X = X1 + X2 and Y = X2 + X3. The random vector X, Y is said to have a bivariate Poisson distribution. Find its ...Suppose that F(x) is a cumulative distribution function. Show that (a) Fn(x) and (b) 1 − [1 − F(x)]n are also cumulative distribution functions when n is a positive integer. Let X1, . . . ,Xn be independent random ...Post your question

0