# Question

A couple considering the purchase of a new home would like to estimate the average number of cars that go past the location per day. The couple guesses that the number of cars passing this location per day has a population standard deviation of 170.

a. On how many randomly selected days should the number of cars passing the location be observed so that the couple can be 99% certain the estimate will be within 100 cars of the true average?

b. Suppose the couple finds out that the population standard deviation of the number of car passing the location per day is not 170 but is actually 272. If they have already taken a sample of the size computed in part a, what confidence does the couple have that their point estimate is within 100 cars of the true average?

c. If the couple has already taken a sample of the size computed in part a and later finds out that the population standard deviation of the number of cars passing the location per day is actually 130, they can be 99% confident their point estimate is within how many cars of the true average?

a. On how many randomly selected days should the number of cars passing the location be observed so that the couple can be 99% certain the estimate will be within 100 cars of the true average?

b. Suppose the couple finds out that the population standard deviation of the number of car passing the location per day is not 170 but is actually 272. If they have already taken a sample of the size computed in part a, what confidence does the couple have that their point estimate is within 100 cars of the true average?

c. If the couple has already taken a sample of the size computed in part a and later finds out that the population standard deviation of the number of cars passing the location per day is actually 130, they can be 99% confident their point estimate is within how many cars of the true average?

## Answer to relevant Questions

The U.S. Senate just passed a bill by a vote of 55–45 (with all 100 senators voting). A student who took an elementary statistics course last semester says, “We can use these data to make a confidence interval about p. ...The standard deviation for a population is σ = 14.8. A sample of 25 observations selected from this population gave a mean equal to 143.72. The population is known to have a normal distribution. a. Make a 99% confidence ...For a population data set, σ = 14.50. a. What should the sample size be for a 98% confidence interval for µ to have a margin of error of estimate equal to 5.50? b. What should the sample size be for a 95% confidence ...A consumer agency that proposes that lawyers’ rates are too high wanted to estimate the mean hourly rate for all lawyers in New York City. A sample of 70 lawyers taken from New York City showed that the mean hourly rate ...What are the parameters of a normal distribution and a t distribution? Explain.Post your question

0