# Question: A random sample of n 25 individuals is selected

A random sample of n = 25 individuals is selected from a population with µ = 20, and a treatment is administered to each individual in the sample. After treatment, the sample mean is found to be µ = 22.2 with SS = 384.

a. How much difference is there between the mean for the treated sample and the mean for the original population?

b. If there is no treatment effect, how much difference is expected between the sample mean and its population mean? That is, find the standard error for M.

c. Based on the sample data, does the treatment have a significant effect? Use a two-tailed test with a = .05.

a. How much difference is there between the mean for the treated sample and the mean for the original population?

b. If there is no treatment effect, how much difference is expected between the sample mean and its population mean? That is, find the standard error for M.

c. Based on the sample data, does the treatment have a significant effect? Use a two-tailed test with a = .05.

**View Solution:**## Answer to relevant Questions

To evaluate the effect of a treatment, a sample is obtained from a population with a mean of µ = 30, and the treatment is administered to the individuals in the sample. After treatment, the sample mean is found to be µ = ...In a recent study, Piff, Kraus, Cote, Cheng, and Keitner (2010) found that people from lower social economic classes tend to display greater prosocial behavior than their higher class counterparts. In one part of the study, ...Recent research has shown that creative people are more likely to cheat than their less creative counterparts (Gino & Ariely, 2010). Participants in the study first completed creativity assessment questionnaires and then ...One sample has SS = 70 and a second sample has SS = 42. a. If n = 8 for both samples, find each of the sample variances, and calculate the pooled variance. Because the samples are the same size, you should find that the ...The following data are from a repeated-measures study examining the effect of a treatment by measuring a group of n = 6 participants before and after they receive the treatment. a. Calculate the difference scores and MD. b. ...Post your question