# Question

a. If f is a differentiable vector field on M C Rn, show that there is an open set AЭM and a differentiable vector field F on A with F(x) = F (x) for xЄM.

b. If M is closed, show that we can choose A = Rn.

b. If M is closed, show that we can choose A = Rn.

## Answer to relevant Questions

Let f: A → Rp be as in Theorem 5-1. a. If x Є M = g-1(0), let h: U → Rn be the essentially unique diffeomorphism such that goh (y) = (y n – p + 1 . yn) and h (0) = x. Define f: Rn- p → f: Rn-p ...If M is an -dimensional manifold (or manifold-with-boundary) in R n, with the usual orientation, show that ∫ fdx1 ^ . ^ dx n, as defined in this section, is the same as ∫ M f, as defined in Chapter 3.Generalize Theorem 5-6 to the case of an oriented (n - 1) -dimensional manifold in Rn. The generalization is w Є A n-1(Mx) defined byApplying the generalized divergence theorem to the set M = {XЄrN: |x| < a} and , find the volume of Sn – 1 = {xЄRn: |x| = 1} in terms of the -dimensional volume of Bn = {x Є Rn: |x| Suppose that bending stress σ in a beam depends upon bending moment M and beam area moment of inertia I and is proportional to the beam half-thickness y. Suppose also that, for the particular case M = 2900 in⋅lbf, ...Post your question

0