Question

a. Rank the following functions by order of growth; that is, find an arrangement g1, g2, ..., g30 of the functions satisfying g1 = Ω(g2), g2 = Ω(g3), ..., g29 = Ω(g30). Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if f(n) = Θ(g(n)).




b. Give an example of a single nonnegative function f(n) such that for all functions gi(n) in part (a), f(n) is neither O(gi(n)) nor Ω(gi(n)).


$1.99
Sales2
Views2277
Comments0
  • CreatedJuly 13, 2010
  • Files Included
Post your question
5000