# Question

At a heat-treating company, iron castings and steel forgings are heat-treated to achieve desired mechanical properties and machinability. One steel forging is annealed to soften the part for each machining. Two lots of this part, made of 1020 steel, are heat-treated in two different furnaces. The specification for this part is 36-66 on the Rockwell G scale. Let X1 and X2 equal the respective hardness measurements for parts selected randomly from furnaces 1 and 2. Assume that the distributions of X1 and X2 are N(47.88,2.19) and N(43.04,14.89), respectively.

(a) Sketch the pdfs of X1 and X2 on the same graph.

(b) Compute P(X1 > X2), assuming independence of X1 and X2.

(a) Sketch the pdfs of X1 and X2 on the same graph.

(b) Compute P(X1 > X2), assuming independence of X1 and X2.

## Answer to relevant Questions

Let X denote the wing length in millimeters of a male gallinule and Y the wing length in millimeters of a female gallinule. Assume that X is N(184.09,39.37) and Y is N(171.93,50.88) and that X and Y are independent. If a ...Approximate P(39.75 ≤ X ≤ 41.25), where X is the mean of a random sample of size 32 from a distribution with mean μ = 40 and variance σ2 = 8. Assume that the background noise X of a digital signal has a normal distribution with μ = 0 volts and σ = 0.5 volt. If we observe n = 100 independent measurements of this noise, what is the probability that at least 7 of ...The probability that a certain type of inoculation takes effect is 0.995. Use the Poisson distribution to approximate the probability that at most 2 out of 400 people given the inoculation find that it has not taken effect. In the casino game roulette, if a player bets $1 on red (or on black or on odd or on even), the probability of winning $1 is 18/38 and the probability of losing $1 is 20/38. Suppose that a player begins with $5 and makes ...Post your question

0