# Question

Consider a gambler who, at each gamble, either wins or loses her bet with respective probabilities p and 1 − p. A popular gambling system known as the Kelley strategy is to always bet the fraction 2p − 1 of your current fortune when p > 1/2. Compute the expected fortune after n gambles of a gambler who starts with x units and employs the Kelley strategy.

## Answer to relevant Questions

The number of accidents that a person has in a given year is a Poisson random variable with mean λ. However, suppose that the value of λ changes from person to person, being equal to 2 for 60 percent of the population and ...In Example 6b, let S denote the signal sent and R the signal received. (a) Compute E[R]. (b) Compute Var(R). (c) Is R normally distributed? (d) Compute Cov(R, S). Example 6b Suppose that if a signal value s is sent from ...Let X1, X2, . . . ,Xn be independent and identically distributed positive random variables. For k ≤ n, find The Conditional Covariance Formula. The conditional covariance of X and Y, given Z, is defined by Cov(X, Y|Z) = E[(X − E[X|Z])(Y − E[Y|Z])|Z] (a) Show that Cov(X, Y|Z) = E[XY|Z] − E[X|Z]E[Y|Z] (b) Prove the conditional ...One ball at a time is randomly selected from an urn containing a white and b black balls until all of the remaining balls are of the same color. Let Ma,b denote the expected number of balls left in the urn when the ...Post your question

0