# Question

Establish Equation (6.2) by differentiating Equation (6.4).

## Answer to relevant Questions

Verify Equation (6.6), which gives the joint density of X(i) and X(j). If X and Y are independent continuous positive random variables, express the density function of (a) Z = X/Y and (b) Z = XY in terms of the density functions of X and Y. Evaluate the density functions in the special case ...Let X be a normal random variable with mean μ and variance σ2. Use the results of Theoretical Exercise 46 to show that In the preceding equation, [n/2] is the largest integer less than or equal to n/2. Check your answer by ...Show that X is stochastically larger than Y if and only if E[f(X)] ≥ E[f(Y)] for all increasing functions f . Show that X ≥st Y, then E[f(X)] ≥ E[f(Y)] by showing that f(X) ≥st f(Y) and then using Theoretical ...In an urn containing n balls, the ith ball has weight W(i), i = 1, . . . , n. The balls are removed without replacement, one at a time, according to the following rule: At each selection, the probability that a given ball in ...Post your question

0