# Question

For the data in Table, suppose an investor desires an expected variance less than 8. What is the minimum number of securities for such a portfolio?

Number of Securities ... Expected Portfolio Variance

1 ........ 46.619

2 ........ 26.839

4 ........ 16.948

6 ........ 13.651

8 ........ 12.003

10 ........ 11.014

12 ........ 10.354

14 ........ 9.883

16 ........ 9.530

18 ........ 9.256

20 ........ 9.036

25 ........ 8.640

30 ........ 8.376

35 ........ 8.188

40 ........ 8.047

45 ........ 7.937

50 ........ 7.849

75 ........ 7.585

100 ........ 7.453

125 ........ 7.374

150 ........ 7.321

175 ........ 7.284

200 ........ 7.255

250 ........ 7.216

300 ........ 7.190

350 ........ 7.171

400 ........ 7.157

450 ........ 7.146

500 ........ 7.137

600 ........ 7.124

700 ........ 7.114

800 ........ 7.107

900 ........ 7.102

1000 ........ 7.097

Infinity ........ 7.058

Number of Securities ... Expected Portfolio Variance

1 ........ 46.619

2 ........ 26.839

4 ........ 16.948

6 ........ 13.651

8 ........ 12.003

10 ........ 11.014

12 ........ 10.354

14 ........ 9.883

16 ........ 9.530

18 ........ 9.256

20 ........ 9.036

25 ........ 8.640

30 ........ 8.376

35 ........ 8.188

40 ........ 8.047

45 ........ 7.937

50 ........ 7.849

75 ........ 7.585

100 ........ 7.453

125 ........ 7.374

150 ........ 7.321

175 ........ 7.284

200 ........ 7.255

250 ........ 7.216

300 ........ 7.190

350 ........ 7.171

400 ........ 7.157

450 ........ 7.146

500 ........ 7.137

600 ........ 7.124

700 ........ 7.114

800 ........ 7.107

900 ........ 7.102

1000 ........ 7.097

Infinity ........ 7.058

## Answer to relevant Questions

Return to the example presented in Problem 1, Chapter 4. A. Assuming short selling is not allowed: (1) For securities 1 and 2, find the composition, standard deviation, and expected return of the portfolio that has minimum ...In Problem 5, assume a riskless rate of 10%. What is the optimal investment? In Problem 5 For the two securities shown, plot all combinations of the two securities in space. Assume p = 1, -1, 0. For each correlation ...A. Compute the mean return and variance of return for each stock in Problem 1 using (1) The single-index model (2) The historical data In Problem 1 B. Compute the covariance between each possible pair of stocks using (1) The ...Complete the procedure in Appendix A for reducing a general three-index model to a three-index model with orthogonal indexes. Using the data from Problem 1, what is the optimum portfolio assuming short sales are allowed but riskless lending and borrowing are forbidden? In Problem 1Post your question

0