- Access to
**800,000+**Textbook Solutions - Ask any question from
**24/7**available

Tutors **Live Video**Consultation with Tutors**50,000+**Answers by Tutors

If X and Y are independent binomial random variables with

If X and Y are independent binomial random variables with identical parameters n and p, show analytically that the conditional distribution of X given that X + Y = m is the hypergeometric distribution. Also, give a second argument that yields the same result without any computations.

Suppose that 2n coins are flipped. Let X denote the number of heads in the first n flips and Y the number in the second n flips. Argue that given a total of m heads, the number of heads in the first n flips has the same distribution as the number of white balls selected when a sample of size m is chosen from n white and n black balls.

Suppose that 2n coins are flipped. Let X denote the number of heads in the first n flips and Y the number in the second n flips. Argue that given a total of m heads, the number of heads in the first n flips has the same distribution as the number of white balls selected when a sample of size m is chosen from n white and n black balls.

Membership
TRY NOW

- Access to
**800,000+**Textbook Solutions - Ask any question from
**24/7**available

Tutors **Live Video**Consultation with Tutors**50,000+**Answers by Tutors

Relevant Tutors available to help