# Question: If X and Y are independent standard normal random variables

If X and Y are independent standard normal random variables, determine the joint density function of

U = X V= X/Y

Then use your result to show that X/Y has a Cauchy distribution.

U = X V= X/Y

Then use your result to show that X/Y has a Cauchy distribution.

**View Solution:**## Answer to relevant Questions

If X and Y are independent continuous positive random variables, express the density function of (a) Z = X/Y and (b) Z = XY in terms of the density functions of X and Y. Evaluate the density functions in the special case ...Consider n independent flips of a coin having probability p of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if n = 5 and the outcome is HHTHT, then there ...Suppose that Y is a normal random variable with mean μ and variance σ2, and suppose also that the conditional distribution of X, given that Y = y, is normal with mean y and variance 1. (a) Argue that the joint distribution ...A deck of n cards numbered 1 through n is thoroughly shuffled so that all possible n! orderings can be assumed to be equally likely. Suppose you are to make n guesses sequentially, where the ith one is a guess of the card in ...If X1, X2, . . . ,Xn are independent and identically distributed random variables having uniform distributions over (0, 1), find (a) E[max(X1, . . . ,Xn)]; (b) E[min(X1, . . . ,Xn)].Post your question