# Question: Let S 100 0 30 r 0 08

Let S = $100, σ = 0.30, r = 0.08, t = 1, and δ = 0. Using equation (11.12) to compute the probability of reaching a terminal node and Suidn−i to compute the price at that node, plot the risk-neutral distribution of year-1 stock prices as in Figures 11.7 and 11.8 for n = 3 and n = 10.

**View Solution:**## Answer to relevant Questions

Repeat the previous problem for n = 50. What is the risk-neutral probability that S1< $80? S1> $120? We sawin Section 10.1 that the undiscounted risk-neutral expected stock price equals the forward price. We will verify this ...Suppose that S = $50, K = $45, σ = 0.30, r = 0.08, and t = 1. The stock will pay a $4 dividend in exactly 3 months. Compute the price of European and American call options using a four-step binomial tree. Let S = $100, σ = 30%, r = 0.08, t = 1, and δ = 0. Suppose the true expected return on the stock is 15%. Set n = 10. Compute European call prices, ∆ and B for strikes of $70, $80, $90, $100, $110, $120, and $130. For ...Consider a bull spread where you buy a 40-strike put and sell a 45-strike put. Suppose σ = 0.30, r = 0.08, δ = 0, and T = 0.5. a. Suppose S = $40. What are delta, gamma, vega, theta, and rho? b. Suppose S = $45. What are ...Let S = $120, K = $100, σ = 30%, r = 0, and δ = 0.08. a. Compute the Black-Scholes call price for 1 year to maturity and for a variety of very long times to maturity. What happens to the price as T →∞? b. Set r = ...Post your question