# Question

Repeat the previous problem, but this time for perpetual options. What do you notice about the prices? What do you notice about the exercise barriers?

## Answer to relevant Questions

Let S = $100, K = $120, σ = 30%, r = 0.08, and δ = 0. a. Compute the Black-Scholes call price for 1 year to maturity and for a variety of very long times to maturity. What happens to the option price as T →∞? b. Set δ ...Make the same assumptions as in the previous problem. a. What is the 9-month forward price for the stock? b. Compute the price of a 95-strike 9-month call option on a futures contract. c. What is the relationship between ...Consider a put for which T = 0.5 and K = $45. Compute the Greeks and verify that equation (13.9) is zero. Suppose you buy a 40-45 bull spread with 91 days to expiration. If you delta-hedge this position, what investment is required? What is your overnight profit if the stock tomorrow is $39? What if the stock is $40.50? Make the same assumptions as in the previous problem. a. What is the price of a standard European put with 2 years to expiration? b. Suppose you have a compound call giving you the right to pay $2 1 year from today to buy ...Post your question

0