# Question: Repeat the previous problem but this time for perpetual options

Repeat the previous problem, but this time for perpetual options. What do you notice about the prices? What do you notice about the exercise barriers?

## Answer to relevant Questions

Let S = $100, K = $120, σ = 30%, r = 0.08, and δ = 0. a. Compute the Black-Scholes call price for 1 year to maturity and for a variety of very long times to maturity. What happens to the option price as T →∞? b. Set δ ...Make the same assumptions as in the previous problem. a. What is the 9-month forward price for the stock? b. Compute the price of a 95-strike 9-month call option on a futures contract. c. What is the relationship between ...Consider a put for which T = 0.5 and K = $45. Compute the Greeks and verify that equation (13.9) is zero. Suppose you buy a 40-45 bull spread with 91 days to expiration. If you delta-hedge this position, what investment is required? What is your overnight profit if the stock tomorrow is $39? What if the stock is $40.50? Make the same assumptions as in the previous problem. a. What is the price of a standard European put with 2 years to expiration? b. Suppose you have a compound call giving you the right to pay $2 1 year from today to buy ...Post your question