# Question: Show by induction on n that R

Show by induction on n that R = [a1, b1] x..x [an, bn] is not a set of measure 0 (or content 0) if ai < bi for each i.

## Answer to relevant Questions

Let f: [a, b] → R be integrable and non-negative, and let Af = {(x, y): a < x < b and 0 < x < f (x)}. Show that Af is Jordan measurable and has area ∫ ba f.Let f: [a, b] x [c, d] → R be continuous and suppose D 2 f is continuous. Define f (y) = ∫ ba f (x, y) dx. Prove Leibnitz' Rule: f1 (y) = ∫ ba D2 f (x, y) dx.If g: Rn → Rn and detg1 (x) ≠ 0, prove that in some open set containing we can write g = to gn 0 ∙ ∙ ∙ o g1, 0.., where is of the form gi(x) = (x1, ∙ ∙ ∙ Fi (x) , ∙ ...a. If M is a k-dimensional manifold in Rn and k < n, show that M has measure 0. b. If M is a closed -dimensional manifold with boundary in Rn, show that the boundary of M is ∂M. Give a counter-example if M is not ...a. Let Ί: Rn → Rn be self-adjoint with matrix A = (aij), so that aij = aji. If f (x) = =Σ aij xixj, show that Dkf (x) = 2 Σj = 1 akjxj. By considering the maximum of on Sn-1 show that there is ...Post your question