Recalculate the subtransient current through the breaker in Problem 7.6 if the generator is initially delivering rated

Question:

Recalculate the subtransient current through the breaker in Problem 7.6 if the generator is initially delivering rated MVA at 0.80 p.f. lagging and at rated terminal voltage.

Problem 7.6

A 1000-MVA, \(20-\mathrm{kV}, 60-\mathrm{Hz}\), three-phase generator is connected through a \(1000-\mathrm{MVA}, 20-\mathrm{kV}, \Delta / 345-\mathrm{kV}\), Y transformer to a \(345-\mathrm{kV}\) circuit breaker and a \(345-\mathrm{kV}\) transmission line. The generator reactances are \(\mathrm{X}_{d}^{\prime \prime}=0.17, \mathrm{X}_{d}^{\prime}=0.30\), and \(\mathrm{X}_{d}=1.5\) per unit, and its time constants are \(\mathrm{T}_{d}^{\prime \prime}=0.05, \mathrm{~T}_{d}^{\prime}=1.0\), and \(\mathrm{T}_{\mathrm{A}}=0.10 \mathrm{~s}\). The transformer series reactance is 0.10 per unit; transformer losses and exciting current are neglected. A three-phase short-circuit occurs on the line side of the circuit breaker when the generator is operated at rated terminal voltage and at no-load. The breaker interrupts the fault three cycles after fault inception. Determine

(a) the subtransient current through the breaker in per-unit and in kA rms and

(b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. Neglect the effect of the transformer on the time constants.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  answer-question

Power System Analysis And Design

ISBN: 9781305632134

6th Edition

Authors: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma

Question Posted: