The extent to which a distribution is peaked or flat
The extent to which a distribution is peaked or flat, also called the kurtosis of the distribution, is often measured by means of the quantity α4 = µ4/σ4 Use the formula for µ4 obtained in Exercise 4.25 to find α4 for each of the following symmetrical distributions, of which the first is more peaked (narrow humped) than the second:
(a) f (- 3) = 0.06, f (- 2) = 0.09, f (- 1) = 0.10, f (0) = 0.50, f (1) = 0.10, f (2) = 0.09, and f (3) = 0.06;
(b) f (- 3) = 0.04, f (- 2) = 0.11, f (- 1) = 0.20, f (0) = 0.30, f (1) = 0.20, f (2) = 0.11, and f (3) = 0.04.
Membership TRY NOW
  • Access to 800,000+ Textbook Solutions
  • Ask any question from 24/7 available
    Tutors
  • Live Video Consultation with Tutors
  • 50,000+ Answers by Tutors
OR
Relevant Tutors available to help