The round trip to the site was just under 360

The round trip to the "site" was just under 360 miles, which gave Fred Kitchener and Mike Kyte plenty of time to discuss the next steps in the project. The site is a rural stretch of highway in Idaho where two visibility sensors are located. The project is part of a con-tract Fred's company, Management Solutions, Inc., has with the state of Idaho and the Federal Highway Administration. Under the con-tract, among other things, Management Solutions is charged with evaluating the performance of a new technology for measuring visibility. The larger study involves determining whether visibility sensors can be effectively tied to electronic message signs that would warn motorists of upcoming visibility problems in rural areas.
Mike Kyte, a transportation engineer and professor at the University of Idaho, has been involved with the project as a consultant to Fred's company since the initial proposal. Mike is very knowledgeable about visibility sensors and traffic systems. Fred's expertise is in managing projects like this one, in which it is important to get people from multiple organizations to work together effectively.
As the pair headed back toward Boise from the site, Mike was more excited than Fred had seen him in a long time. Fred reasoned that the source of excitement was that they had finally been successful in getting solid data to compare the two visibility sensors in a period of low visibility. The previous day at the site had been very foggy. The Scorpion Sensor is a tested technology that Mike has worked with for some time in urban applications. However, it has never before been installed in such a remote location as this stretch of Highway I-84, which connects Idaho and Utah. The other sensor produced by the Vanguard Company measures visibility in a totally new way using laser technology.
The data that had excited Mike so much were collected by the two sensors and fed back to a computer system at the port of entry near the test site. The measurements were collected every five minutes for the 24-hour day. As Fred took advantage of the 75-mph speed limit through southern Idaho, Mike kept glancing at the data on the printout he had made of the first few five-minute time periods. The Scorpion system had not only provided visibility readings, but it also had provided other weather-related data, such as temperature, wind speed, wind direction, and humidity.
Mike's eyes went directly to the two visibility columns. Ideally, the visibility readings for the two sensors would be the same at any five-minute period, but they weren't. After a few exclamations of surprise from Mike, Fred suggested that they come up with an outline for the report they would have to make from these data for the project team meeting next week. Both agreed that a full descriptive analysis of all the data, including graphs and numerical measures, was necessary. In addition, Fred wanted to use these early data to provide an estimate for the mean visibility provided by the two sensors. They agreed that estimates were needed for the day as a whole and also for only those periods when the Scorpion system showed visibility under 1.0 mile. They also felt that the analysis should look at the other weather factors, too, but they weren't sure just what was needed.
As the lights in the Boise Valley became visible, Mike agreed to work up a draft of the report, including a narrative based on the data in the file called Visibility. Fred said that he would set up the project team meeting agenda, and Mike could make the presentation. Both men agreed that the data were strictly a sample and that more low-visibility data would be collected when conditions occurred.

Members

  • Access to 2 Million+ Textbook solutions
  • Ask any question from 24/7 available
    Tutors
$9.99
VIEW SOLUTION
OR

Non-Members

Get help from Statistics Tutors
Ask questions directly from Qualified Online Statistics Tutors .
Best for online homework instance.