Question: A subway station carries both blue (B) line and red (R) line trains. Red line trains and blue line trains arrive as independent Poisson processes
A subway station carries both blue (B) line and red (R) line trains. Red line trains and blue line trains arrive as independent Poisson processes with rates λR = 0.15 and λB = 0.30 trains/min respectively. You arrive at the station at random time t and watch the trains for one hour.
(a) What is the PMF of N, the number of trains that you count passing through the station?
(b) Given that you see N = 30 trains, what is the conditional PMF of R, the number of red trains that you see?
(a) What is the PMF of N, the number of trains that you count passing through the station?
(b) Given that you see N = 30 trains, what is the conditional PMF of R, the number of red trains that you see?
Step by Step Solution
★★★★★
3.42 Rating (165 Votes )
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
a The trains red and blue together arrive as a Poisson process of rate R B 045 tra... View full answer
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
Document Format (1 attachment)
971-M-S-P (10062).docx
120 KBs Word File
