Question: A track has the shape of a square capped on two opposite sides by semicircles. The length of a side of the square is measured
a. Compute the area of the square and its uncertainty.
b. Compute the area of one of the semicircles and its uncertainty.
c. Let S denote the area of the square as computed in part (a), and let C denote the area of one of the semicircles as computed in part (b). The area enclosed by the track is A = S + 2C. Someone computes the uncertainty in A as σA = √σ2S + 4σ2C. Is this correct? If so, explain why. If not, compute the uncertainty in A correctly.
Step by Step Solution
3.44 Rating (147 Votes )
There are 3 Steps involved in it
a Let s be the measured side of the square Then s 1812 s 01 The estimated area is S s 2 32... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
944-M-S-P (8497).docx
120 KBs Word File
