Question: Assume S0 = $100, r = 0.05, = 0.25, = 0, and T = 1. Use Monte Carlo valuation to compute the price

Assume S0 = $100, r = 0.05, σ = 0.25, δ = 0, and T = 1. Use Monte Carlo valuation to compute the price of a claim that pays $1 if ST > $100, and 0 otherwise.
(This is called a cash-or-nothing call and will be further discussed in Chapter 23.
The actual price of this claim is $0.5040.)
a. Running 1000 simulations, what is the estimated price of the contract? How close is it to $0.5040?
b. What is the standard deviation of your Monte Carlo estimate? What is the 95% confidence interval for your estimate?
c. Use a 1-year at-the-money call as a control variate and compute a price using equation (19.9), setting β = 1.
d. Again use a 1-year at-the-money call as a control variate, only this time use equation (19.9) and set β optimally. What is the standard deviation of your estimate? For the following three problems, assume that S0 = $100, r = 0.08, α = 0.20,
σ = 0.30, and δ = 0. Perform 2000 simulations. Note that most spreadsheets have built-in functions to compute skewness and kurtosis. (In Excel, the functions are Skew and Kurt.) For the normal distribution, skewness, which measures asymmetry, is zero. Kurtosis, discussed in Chapter 18, equals 3.

Step by Step Solution

3.39 Rating (168 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The estimate should be within a few cents of the true value The standard deviation ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

511-B-C-F-C-V (1124).docx

120 KBs Word File

Students Have Also Explored These Related Corporate Finance Questions!