Question: Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations. Repeat Exercise 7 with p = 2, 3, and

Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations. Repeat Exercise 7 with p = 2, 3, and 4 iterations. Which choice of p gives the best answer for each initial-value problem?

In Exercise 7

a. y' = y/t − (y/t)2, 1≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t/(1 + ln t).

b. y' = 1+y/t+(y/t)2, 1≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y' = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.1; actual solution y(t) = −3 + 2/(1 + e−2t).

d. y' = −5y+5t2+2t, 0≤ t ≤ 1, y(0) = 1/3, with h = 0.1; actual solution y(t) = t2+1/3 e−5t .

Step by Step Solution

3.24 Rating (159 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The new algorithm gives the results in the followin... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

731-M-N-A-N-L-A (571).docx

120 KBs Word File

Students Have Also Explored These Related Numerical Analysis Questions!