Question: Consider the following inventory policy for the certain product. If the demand during a period exceeds the number of items available, this unsatisfied demand is
Let D1, D2, . . . , be the demand for the product in periods 1,
2, . . . , respectively. Assume that the Ds are independent and identically distributed random variables taking on the values, 0, 1, 2, 3, 4, each with probability 1/5. Let Xn denote the amount of stock on hand after ordering at the end of period n (where X0 = 2), so that
When {Xn} (n = 0, 1, . . .) is a Markov chain. It has only two states, 1 and 2, because the only time that ordering will take place is when Zn = 0, 1, 2, or 3, in which case 2, 2, 4, and 4 units are ordered, respectively, leaving Xn = 2, 1, 2, 1, respectively.
(a) Construct the (one-step) transition matrix.
(b) Use the steady-state equations to solve manually for the steady state probabilities.
(c) Now use the result given in Prob. 29.5-2 to find the steady state probabilities.
(d) Suppose that the ordering cost is given by (2 + 2m) if an order is placed and zero otherwise. The holding cost per period is Zn if Zn > 0 and zero otherwise. The shortage cost per period is 4Zn if Zn 0 and zero otherwise. Find the (long-run) expected average cost per unit time.
if XD
Step by Step Solution
3.27 Rating (162 Votes )
There are 3 Steps involved in it
a b P and 1 2 1 1 2 12 c P is doubly stochastic and there ... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
545-M-S-M-C (125).docx
120 KBs Word File
