Question: If f(x) = 1n x, then f(n) (x) = (-1)n-1 (n - 1)! / xn. Thus, the Taylor polynomial of order n based at 1
If f(x) = 1n x, then f(n) (x) = (-1)n-1 (n - 1)! / xn. Thus, the Taylor polynomial of order n based at 1 for 1n x is
1n x = (x - 1) - 1 / 2 (x - 1)2 + 1 / 3 (x - 1)3 + ...
.png)
How large would n have to be for us to know that |Rn(x)| ( 0.000005 if 0.8 ( x ( 1.2?
x1)+ R(x)
Step by Step Solution
3.52 Rating (165 Votes )
There are 3 Steps involved in it
f n1 x 1 n n ... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
955-M-C-D-E (2478).docx
120 KBs Word File
