Question: In Problem 33 - 56, find the indicated extremum of each function on the given interval. 34. Absolute maximum value on [0, ) for F(x)
34. Absolute maximum value on [0, ∞) for
F(x) = 6x - x2 + 4
36. Absolute minimum value on [0, ∞) for
F(x)- x3 - 6x2
38. Absolute minimum value on [0, ∞) for
F(x)=(2 - x)(x + l)2
40. Absolute maximum value on (0, ∞) for
F(x)=4x3 - 8x4
42.Absolute minimum value on (0, ∞) for
f(x)=4 + x + 9/x
44.Absolute minimum value on (0, ∞) for
f(x)=20 - 4x - 250/x2
46.Absolute minimum value on (0, ∞) for
f(x) = 2x +5/x + 4/x3
48.Absolute maximum value on (0, ∞) for
f(x) = x4/ex
50.Absolute minimum value on (0, ∞) for
f(x) = ex/x
52.Absolute minimum value on (0, ∞) for
f(x) = 4x In x - 7x
54.Absolute minimum value on (0, ∞) for
f(x) = x3(ln x -2)
56.Absolute maximum value on (0, ∞) for
f(x) = ln(x2e-x)
Step by Step Solution
3.34 Rating (166 Votes )
There are 3 Steps involved in it
34 fx 6x x 2 4 I 0 fx 6 2x 23 x x 3 is the only critical value on I and f3 13 Also f0 4 fx 2 f3 2 0 Therefore f3 13 is the absolute maximum 36 fx x 3 ... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
828-B-F-F-M (4563).docx
120 KBs Word File
