Question: Let I be an open interval, f : I R, and c l. The function f is said to have a local maximum
.png)
for u > 0 and t b) If f is differentiable at c and has a local maximum at c, prove that f'(c) = 0.
c) Make and prove analogous statements for local minima.
d) Show by example that the converses of the statements in parts b) and c) are false. Namely, find an f' such that f'(0) = 0 but f has neither a local maximum nor a local minimum at 0.
Ct)) o and ct f(e 2 0 Iu
Step by Step Solution
3.54 Rating (161 Votes )
There are 3 Steps involved in it
a If f has a local maximum at x 0 then fx 0 h fx 0 0 for ... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
741-M-N-A-D-I (259).docx
120 KBs Word File
