Question: Let the random variable Xn have a binomial distribution: Where each Bi is independent and i distributed according to We can look at X n

Let the random variable Xn have a binomial distribution:

, - , Bi

Where each Bi is independent and i distributed according to

image

We can look at Xn as the cumulated sum of a series of events that occur over time. The events are the individual Bi. Note that there are two parameters of interest here. Namely, the p and the n. The first governs the probability of each ?event? B, whereas the second governs the number of events.

The question is, what happens to the distribution of Xn as the number of events go to infinity? There arc two interesting cases, and the questions below relate to these.

(a) Suppose now, n ? ?, while p ? 0 such that ? = np remains constant. That is, the probability of getting a Bi = I goes to zero as is increases. But, the expected ?frequency? of getting a one remains the same. This clearly imposes a certain speed of convergence on the probability.

What is the probability Pr(Xn = k)? Write the implied formula as a function of p, n, and k.

(b) Substitute ? = np to write Pr(Xn = 4) as a function of the three terms shown in Question 1.

(c) Let n ? ? and obtain the Poisson distribution:

image

(d) Remember that during this limiting process, the p ? 0 at a certain speed. How do you interpret this limiting probability? Where do rare events fit in?

, - , Bi

Step by Step Solution

3.42 Rating (165 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

a b c Consider the ratio As the contents of converges to 1 Therefore Which is ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

41-B-F-F-M (35).docx

120 KBs Word File

Students Have Also Explored These Related Finance Questions!