Question: Repeat Exercise 1 using the algorithm developed in Exercise 5. In Exercise 1 a. u' 1 = 3u 1 + 2u 2 (2t 2

Repeat Exercise 1 using the algorithm developed in Exercise 5.

In Exercise 1

a. u'= 3u1 + 2u2 − (2t2 + 1)e2t , u1(0) = 1; u'= 4u1 + u2 + (t2 + 2t − 4)e2t , u2(0) = 1; 0 ≤ t ≤ 1; h = 0.2; actual solutions u1(t) = 1/3 e5t – 1/3 e−t + e2t and u2(t) = 1/3 e5t + 2/3 e−t + t2e2t .

b. u'= −4u1 − 2u2 + cos t + 4 sin t, u1(0) = 0; u'= 3u1 + u2 − 3 sin t, u2(0) = −1; 0 ≤ t ≤ 2; h = 0.1; actual solutions u1(t) = 2e−t − 2e−2t + sin t and u2(t) = −3e−t + 2e−2t .

c. u'= u2, u1(0) = 1; u'= −u1 − 2et + 1, u2(0) = 0; u'= −u1 − et + 1, u3(0) = 1; 0 ≤ t ≤ 2; h = 0.5; actual solutions u1(t) = cos t + sin t − et + 1, u2(t) = −sin t + cos t − et , and u3(t) = −sin t + cos t.

d. u'= u2 − u3 + t, u1(0) = 1; u'= 3t2, u2(0) = 1; u'= u2 + e−t , u3(0) = −1; 0 ≤ t ≤ 1; h = 0.1; actual solutions u1(t) = −0.05t5 + 0.25t4 + t + 2 − e−t , u2(t) = t3 + 1, and u3(t) = 0.25t4 + t − e−t .

Step by Step Solution

3.41 Rating (167 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The Adams FourthOrder PredictorCorrector method for systems applied to the proble... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

731-M-N-A-N-L-A (587).docx

120 KBs Word File

Students Have Also Explored These Related Numerical Analysis Questions!