Repeat Problem 43, but replacing the 10 Mbps link with a 10 Gbps link. Note that in

Question:

Repeat Problem 43, but replacing the 10 Mbps link with a 10 Gbps link. Note that in your answer to part c, you will realize that it takes a very long time for the congestion window size to reach its maximum window size after recovering from a packet loss. Sketch a solution to solve this problem.
Problem 43
Consider that only a single TCP (Reno) connection uses one 10Mbps link which does not buffer any data. Suppose that this link is the only congested link between the sending and receiving hosts. Assume that the TCP sender has a huge file to send to the receiver, and the receiver's receive buffer is much larger than the congestion window. We also make the following assumptions: each TCP segment size is 1,500 bytes; the two-way propagation delay of this connection is 100 msec; and this TCP connection is always in congestion avoidance phase, that is, ignore slow start.
a. What is the maximum window size (in segments) that this TCP connection can achieve?
b. What is the average window size (in segments) and average throughput (in bps) of this TCP connection?
c. How long would it take for this TCP connection to reach its maximum window again after recovering from a packet loss?
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Computer Networking A Top-Down Approach

ISBN: 978-0136079675

5th edition

Authors: James F. Kurose, Keith W. Ross

Question Posted: