Question: Find a graph, as simple as possible, that cannot be vertex colored with three colors. Why is this of interest in connection with Prob. 24?
Find a graph, as simple as possible, that cannot be vertex colored with three colors. Why is this of interest in connection with Prob. 24?
Data from Prob. 24
The famous four-color theorem states that one can color the vertices of any planar graph (so that adjacent vertices get different colors) with at most four colors. It had been conjectured for a long time and was eventually proved in 1976 by Appel and Haken. Can you color the complete graph K5 with four colors? Does the result contradict the four-color theorem?
Step by Step Solution
3.45 Rating (152 Votes )
There are 3 Steps involved in it
One example of a graph that cannot be vertex colored with three colors is the complete graph K4 also ... View full answer
Get step-by-step solutions from verified subject matter experts
