Question: Suppose that the total revenue function for a manufacturer is R(x) = 300 ln(x + 1), so the sale of x units of a product

Suppose that the total revenue function for a manufacturer is R(x) = 300 ln(x + 1), so the sale of x units of a product brings in about R(x) dollars. Suppose also that the total cost of producing x units is C(x) dollars, where C(x) = 2x. Find the value of x at which the profit function R(x) - C(x) will be maximized. Show that the profit function has a relative maximum and not a relative minimum point at this value of x.

Step by Step Solution

3.39 Rating (174 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

We wish to maximize Rx Cx The only c... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Applied Calculus Questions!