Question: Subset the data to select only those individuals who lived in an urban area. Reduce the dimensionality of the data by converting numerical variables such
Subset the data to select only those individuals who lived in an urban area. Reduce the dimensionality of the data by converting numerical variables such as age, height, weight, number of years of education, number of siblings, family size, number of weeks employed, self-esteem scale, and income into a smaller set of principal components that retain at least 90% of the information in the original data.
| ID | Age | Urban | Mother_Edu | Father_Edu | Siblings | Black | Hispanic | White | Christian | WomenPlace | Male | FamilySize | Self_Esteem | Height | Weight | Outgoing_Kid | Outgoing_Adult | HealthPlan | Income | Marital_Status | Education | WeeksEmployed | NumberSpouses |
| 1 | 21 | 1 | 8 | 8 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 65 | ||||||||||
| 2 | 20 | 1 | 5 | 8 | 8 | 0 | 0 | 1 | 1 | 1 | 0 | 5 | 16 | 62 | 120 | 0 | 1 | 1 | 0 | 1 | 12 | 0 | 1 |
| 3 | 18 | 1 | 10 | 12 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 20 | 1 | 1 | 1 | 0 | 1 | 12 | 52 | 1 | ||
| 4 | 17 | 1 | 11 | 12 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 67 | 110 | 0 | 1 | |||||||
| 5 | 20 | 1 | 12 | 12 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 23 | 63 | 130 | ||||||||
| 6 | 19 | 1 | 12 | 12 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 27 | 64 | 200 | 1 | 1 | 1 | 40000 | 1 | 16 | 52 | 1 |
| 7 | 15 | 1 | 12 | 12 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 26 | 65 | 131 | 0 | 1 | 1 | 25000 | 3 | 12 | 52 | 2 |
| 8 | 21 | 1 | 9 | 6 | 7 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 23 | 65 | 179 | 1 | 1 | 1 | 27400 | 3 | 13 | 52 | 2 |
| 9 | 16 | 1 | 12 | 10 | 4 | 0 | 0 | 1 | 1 | 0 | 1 | 6 | 26 | 66 | 145 | 1 | 1 | 1 | 52000 | 1 | 14 | 52 | 1 |
| 10 | 19 | 1 | 12 | 12 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 19 | 66 | 115 | 0 | 1 | ||||||
| 11 | 20 | 1 | 12 | 12 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 71 | 155 | 1 | 1 | 1 | 55000 | 0 | 16 | 52 | 0 | |
| 12 | 20 | 1 | 15 | 12 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 30 | 66 | 118 | 0 | 1 | ||||||
| 13 | 21 | 1 | 12 | 16 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | 25 | 71 | 180 | 0 | 1 | 1 | 60000 | 2 | 16 | 52 | 1 |
| 14 | 16 | 1 | 12 | 12 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 21 | 67 | 135 | 1 | 1 | 1 | 48000 | 2 | 18 | 52 | 1 |
| 15 | 15 | 1 | 12 | 12 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 23 | 73 | 185 | 1 | 0 | 1 | 0 | 1 | 16 | 0 | 1 |
| 16 | 21 | 1 | 12 | 12 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 25 | 63 | 130 | 1 | 1 | 1 | 38000 | 1 | 13 | 52 | 1 |
| 17 | 22 | 1 | 12 | 15 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 24 | 69 | 160 | 1 | 1 | 0 | 48000 | 0 | 13 | 52 | 1 |
| 18 | 21 | 1 | 12 | 16 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 28 | 69 | 155 | 1 | 1 | 1 | 120000 | 3 | 13 | 52 | 2 |
| 19 | 22 | 1 | 10 | 12 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 28 | 64 | 120 | 1 | 1 | ||||||
| 20 | 20 | 1 | 12 | 18 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 21 | 64 | 120 | 0 | 1 | 1 | 52000 | 1 | 17 | 52 | 1 |
| 21 | 18 | 1 | 12 | 18 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 5 | 28 | 62 | 133 | 1 | 1 | 1 | 82000 | 1 | 16 | 52 | 1 |
| 22 | 16 | 1 | 12 | 12 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 17 | 64 | 110 | 0 | 1 | 1 | 36000 | 1 | 16 | 52 | 1 |
| 23 | 21 | 1 | 12 | 12 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | 72 | 175 | |||||||||
| 24 | 18 | 1 | 12 | 12 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | 28 | 71 | 180 | 1 | 1 | ||||||
| 25 | 20 | 1 | 14 | 16 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 19 | 67 | 125 | 0 | 1 | 1 | 20000 | 1 | 14 | 52 | 1 |
| 26 | 17 | 1 | 16 | 17 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 25 | 67 | 136 | 1 | 1 | ||||||
| 27 | 19 | 1 | 14 | 20 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 23 | 63 | 123 | 1 | 1 | 1 | 13126 | 1 | 16 | 44 | 2 |
| 28 | 15 | 1 | 14 | 20 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 19 | 65 | 114 | 0 | 1 | 1 | 24000 | 3 | 13 | 52 | 3 |
| 29 | 19 | 1 | 0 | 4 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 4 | 30 | 67 | 146 | 0 | 1 | 1 | 50000 | 1 | 12 | 52 | 1 |
Step by Step Solution
3.21 Rating (154 Votes )
There are 3 Steps involved in it
Heres how to subset and perform dimensionality reduction on the data using Python libraries like pandas and scikitlearn 1 Importing Libraries and Load... View full answer
Get step-by-step solutions from verified subject matter experts
