Question: Compute (iint_{mathcal{S}} mathbf{F} cdot d mathbf{S}) for the given oriented surface. (mathbf{F}=langle x y, y, 0angle, quad) cone (z^{2}=x^{2}+y^{2}, x^{2}+y^{2} leq 4, z geq 0,
Compute \(\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}\) for the given oriented surface.
\(\mathbf{F}=\langle x y, y, 0angle, \quad\) cone \(z^{2}=x^{2}+y^{2}, x^{2}+y^{2} \leq 4, z \geq 0, \quad\) downward-pointing normal
Step by Step Solution
3.41 Rating (151 Votes )
There are 3 Steps involved in it
We parametrize the surface S by Phitheta tt cos theta t sin theta t with the parameter domain mathca... View full answer
Get step-by-step solutions from verified subject matter experts
