Question: Compute (iint_{mathcal{S}} mathbf{F} cdot d mathbf{S}) for the given oriented surface. (mathbf{F}=langle 0,3, xangle), part of sphere (x^{2}+y^{2}+z^{2}=9), where (x geq 0, y geq 0,
Compute \(\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}\) for the given oriented surface.
\(\mathbf{F}=\langle 0,3, xangle\), part of sphere \(x^{2}+y^{2}+z^{2}=9\), where \(x \geq 0, y \geq 0, z \geq 0\), outward-pointing normal
Step by Step Solution
3.42 Rating (149 Votes )
There are 3 Steps involved in it
We parametrize the octant S by Phitheta phi3 cos theta sin phi 3 sin theta sin phi 3 cos phi 0 leq t... View full answer
Get step-by-step solutions from verified subject matter experts
