Question: Compute the line integral (int_{mathbf{c}} mathbf{F} cdot d mathbf{r}) for the given vector field and path. (mathbf{F}(x, y)=leftlanglefrac{2 y}{x^{2}+4 y^{2}}, frac{x}{x^{2}+4 y^{2}}ightangle), the path (mathbf{r}(t)=leftlanglecos
Compute the line integral \(\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{r}\) for the given vector field and path.
\(\mathbf{F}(x, y)=\left\langle\frac{2 y}{x^{2}+4 y^{2}}, \frac{x}{x^{2}+4 y^{2}}ightangle\), the path \(\mathbf{r}(t)=\left\langle\cos t, \frac{1}{2} \sin tightangle\) for \(0 \leq t \leq 2 \pi\)
Step by Step Solution
3.42 Rating (149 Votes )
There are 3 Steps involved in it
Step 1 Calculate the integral F rt r t rt cost 12 F r1 2y x 4y x 4y sint X 4y T... View full answer
Get step-by-step solutions from verified subject matter experts
