Question: 17.3 Suppose that E(ut ut - 1, ut - 2, . . .) = 0 and ut follows the ARCH process, s2t = 1.0
17.3 Suppose that E(ut ut - 1, ut - 2, . . .) = 0 and ut follows the ARCH process, s2t
= 1.0 + 0.5 u2t
- 1.
a. Let E(u2t
) = var(ut) be the unconditional variance of ut. Show that var(ut) = 2. (Hint: Use the law of iterated expectations, E(u2t
) = E3Eu2t
ut - 1)4.)
b. Suppose that the distribution of ut conditional on lagged values of ut is N(0, s2t
). If ut - 1 = 0.2, what is Pr(-3 … ut … 3)? If ut - 1 = 2.0, what is Pr(-3 … ut … 3)?
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
