Question: In the linear model Y X0e with E[Xe] 0 the GMMcriterion function for is J () 1 n Y X
In the linear model Y Æ X0¯Åe with E[Xe] Æ 0 the GMMcriterion function for ¯ is J (¯) Æ
1 n
¡
Y ¡X ¯
¢0 Xb
¡1X 0 ¡
Y ¡X ¯
¢
(13.29)
where b
Æ n¡1Pni
Æ1 Xi X0 i be2 i , bei Æ Yi ¡ X0 i
b¯ are the OLS residuals, and b¯ Æ
¡
X 0X
¢¡1 X 0Y is least squares.
The GMMestimator of ¯ subject to the restriction r (¯) Æ 0 is e¯ Æ argmin r (¯)Æ0 Jn(¯).
The GMMtest statistic (the distance statistic) of the hypothesis r (¯) Æ 0 is D Æ J ( e¯) Æ min r (¯)Æ0 J (¯). (13.30)
(a) Show that you can rewrite J (¯) in (13.29) as J (¯) Æ n
¡
¯¡ b¯
¢0 bV ¡1
¯
¡
¯¡ b¯
¢
and thus e¯ is the same as the minimumdistance estimator.
(b) Show that under linear hypotheses the distance statistic D in (13.30) equals theWald statistic.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
