Question: Moment Generating Function Method. (a) Show that if X1, . . .,Xn are independent Poisson distributed with parameters (i) respectively, then Y = n i=1
Moment Generating Function Method.
(a) Show that if X1, . . .,Xn are independent Poisson distributed with parameters (λi) respectively, then Y =
n i=1 Xi is Poisson with parameter
n i=1 λi.
(b) Show that if X1, . . .,Xn are independent Normally distributed with parameters (μi, σ2i
), then Y =
n i=1 Xi is Normal with mean
n i=1 μi and variance
n i=1 σ2i
.
(c) Deduce from part
(b) that if X1, . . . , Xn are IIN(μ, σ2), then ¯X ∼ N(μ, σ2/n).
(d) Show that if X1, . . .,Xn are independent χ2 distributed with parameters (ri) respectively, then Y =
n i=1 Xi is χ2 distributed with parameter
n i=1 ri.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
