Question: Take the model Y X0e with E[e j X] 0 and E e2 j X 2. An econometrician more enterprising
Take the model Y Æ X0¯Åe with E[e j X] Æ 0 and E
£
e2 j X
¤
Æ ¾2. An econometrician more enterprising than the one in previous question notices that this implies the nk moment conditions E[Xi ei ] Æ 0, i Æ 1, ...,n.
We can write the moments using matrix notation as E h
X 0 ¡
Y ¡X ¯
¢i where X Æ
0 BBBB@
X0 1 0 ¢ ¢ ¢ 0 0 X0 2 0
...
...
...
0 0 ¢ ¢ ¢ X0 n
1 CCCCA.
Given an nk £nk weight matrixW this implies a GMM criterion J (¯) Æ
¡
Y ¡X ¯
¢0 XW X 0 ¡
Y ¡X ¯
¢
.
(a) Calculate Æ E h
X 0
ee0X i
.
(b) The econometrician decides to set W Æ ¡, the Moore-Penrose generalized inverse of . (See Section A.6.) Note: A useful fact is that for a vector a,
¡
aa0¢¡
Æ aa0 ¡
a0a
¢¡2 .
(c) Find the GMMestimator b¯ that minimizes J (¯).
(d) Find a simple expression for the minimized criterion J ( b¯).
(e) Comment on whether the Â2 approximation from Theorem 13.14 is appropriate for J ( b¯).
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
