Question: The example MATLAB code C.7 numerically integrated the integrals in solution (8.5.9) for the case of the flat rigid punch problem. Modify this example code
The example MATLAB code C.7 numerically integrated the integrals in solution (8.5.9) for the case of the flat rigid punch problem. Modify this example code to handle the case of the cylindrical punch given by solution (8.5.13) and thus generate the τ, max contours shown in Fig. 8.43.
Equation 8.5.9
![2y p(s) (xs) - [ -a a [(x x) + y] 0x = = Txy = 2y ra - L ds p(s) [( x s) + x] a 2Py ds = - + [-3 - 4](https://dsd5zvtm8ll6.cloudfront.net/images/question_images/1705/0/5/0/57265a101cc9cf9f1705050572929.jpg)
Equation 8.5.13
![0x = dy = Txy a 2y p(s) (x - s) L 2- 21 a [(x s) + y] ds = p(s) -a [(x x) + 1] ra L ds == p(s) (x - s)](https://dsd5zvtm8ll6.cloudfront.net/images/question_images/1705/0/5/0/59565a101e3534661705050595624.jpg)
Fig 8.43

2y p(s) (xs) - [ - a [(x x) + y] -a 0x = = Txy = ds a = p(s) (x - s) ds 22 [(x x) + y] T -a 2Py - + 1. -a 2y ra p(s) 2Py ds = = = 2 L [(x 5) + y] -1. -a (x-s) - /a. - 3 [(x s ) + y] 4 a 22 - - ds 1 ds - [( x s) + 1 ] (x - s) a 3 [ ( x s) + y ] ds
Step by Step Solution
3.43 Rating (156 Votes )
There are 3 Steps involved in it
Calculate and Plot Stress Contours Under Surface Loading to a Half Space Numerica... View full answer
Get step-by-step solutions from verified subject matter experts
