Question: 1.Problem10.27LetXbeacontinuousrandomvariablewithprobabilityden sityfunction f(x).Supposethat theprobabilitydistributionfunctionF(x)= P(Xx)isstrictlyincreasingontherangeofX.DefinethefunctionI(u)as theinversefunctionofF(x).Verifythat (a) P(I(U)x)=P(Xx)forallx,wherethecontinuousrandom variableUisuniformlydistributedon(0,1). (b)Foranyfunctiong(x),E[g(X)]= g(x)f(x)dx= 1 0 h(u)du,where thefunctionh(u)isdefinedbyh(u)=g(I(u))for0
1.Problem10.27LetXbeacontinuousrandomvariablewithprobabilityden sityfunction f(x).Supposethat theprobabilitydistributionfunctionF(x)=
P(X≤x)isstrictlyincreasingontherangeofX.DefinethefunctionI(u)as theinversefunctionofF(x).Verifythat
(a) P(I(U)≤x)=P(X≤x)forallx,wherethecontinuousrandom variableUisuniformlydistributedon(0,1).
(b)Foranyfunctiong(x),E[g(X)]= ∞
−∞g(x)f(x)dx= 1 0 h(u)du,where thefunctionh(u)isdefinedbyh(u)=g(I(u))for0
Step by Step Solution
There are 3 Steps involved in it
The Answer is in the image, click to view ... View full answer
Get step-by-step solutions from verified subject matter experts
