Question: [20] (a) Show that a set S is sparse iff for all x S, CDp(x|S) O(log l(x)) for some polynomial p. (b) Show

[20]

(a) Show that a set S is sparse iff for all x ∈ S, CDp(x|S) ≤

O(log l(x)) for some polynomial p.

(b) Show that set S ∈ P is sparse iff for all x ∈ S, CDp(x) ≤ O(log l(x))

for some polynomial p.

Comments. Use Theorem 7.2.1.

Source: [H.M. Buhrman and L. Fortnow, Proc. 14th Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comput.

Sci., Springer-Verlag, 1997; H.M. Buhrman, L. Fortnow, and S. Laplante, SIAM J. Comput., 31:3(2001), 887–905]. The authors also define a nondeterministic version of CD and prove several results.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Elementary Probability For Applications Questions!