Question: We define the Josephus problem as follows. Suppose that n people form a circle and that we are given a positive integer m n.
We define the Josephus problem as follows. Suppose that n people form a circle and that we are given a positive integer m ≤ n. Beginning with a designated first person, we proceed around the circle, removing every mth person. After each person is removed, counting continues around the circle that remains. This process continues until we have removed all n people. The order in which the people are removed from the circle defines the (n, m)-Josephus permutation of the integers 1, 2, . . . ,n. For example, the (7, 3)-Josephus permutation is 〈3, 6, 2, 7, 5, 1, 4〉.
a. Suppose that m is a constant. Describe an O(n)-time algorithm that, given an integer n, outputs the (n, m)-Josephus permutation.
b. Suppose that m is not a constant. Describe an O(n lg n)-time algorithm that, given integers n and m, outputs the (n, m)-Josephus permutation.
Step by Step Solution
3.37 Rating (163 Votes )
There are 3 Steps involved in it
a We use a circular list in which each element has two attributes keyand next At the beginning we in... View full answer
Get step-by-step solutions from verified subject matter experts
