Question: A certain queueing system has a Poisson input, with a mean arrival rate of 4 customers per hour. The service-time distribution is exponential, with a
A certain queueing system has a Poisson input, with a mean arrival rate of 4 customers per hour. The service-time distribution is exponential, with a mean of 0.2 hour. The marginal cost of providing each server is $20 per hour, where it is estimated that the cost that is incurred by having each customer idle (i.e., in the queueing system) is $120 per hour for the first customer and $180 per hour for each additional customer. Determine the number of servers that should be assigned to the system to minimize the expected total cost per hour. [Hint: Express E(WC) in terms of L, P0, and , and then use Figs. 17.6 and 17.7.]
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
