Question: Give a direct proof for the identity [begin{aligned}mathbb{E} & {left[left(sum_{l=1}^{N} gleft(B_{t_{l-1}}ight)left[left(B_{t_{l}}-B_{t_{l-1}}ight)^{2}-left(t_{l}-t_{l-1}ight)ight]ight)^{2}ight] } & =mathbb{E}left[sum_{l=1}^{N}left|gleft(B_{t_{l-1}}ight)ight|^{2}left[left(B_{t_{l}}-B_{t_{l-1}}ight)^{2}-left(t_{l}-t_{l-1}ight)ight]^{2}ight] .end{aligned}] appearing in the proof of Lemma 18.4. Data From Leema
Give a direct proof for the identity \[\begin{aligned}\mathbb{E} & {\left[\left(\sum_{l=1}^{N} g\left(B_{t_{l-1}}ight)\left[\left(B_{t_{l}}-B_{t_{l-1}}ight)^{2}-\left(t_{l}-t_{l-1}ight)ight]ight)^{2}ight] } \\& =\mathbb{E}\left[\sum_{l=1}^{N}\left|g\left(B_{t_{l-1}}ight)ight|^{2}\left[\left(B_{t_{l}}-B_{t_{l-1}}ight)^{2}-\left(t_{l}-t_{l-1}ight)ight]^{2}ight] .\end{aligned}\]
appearing in the proof of Lemma 18.4.
Data From Leema 18.4

18.4 Lemma. Let (Bt)to be a BM, II = {0 to
Step by Step Solution
3.49 Rating (159 Votes )
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
