Question: 0 01 0 01 0 0001 0 01 2 Continuing this pattern we see that 1 0 01 0 0001 can be expressed as the

 0 01 0 01 0 0001 0 01 2 Continuing this

pattern we see that 1 0 01 0 0001 can be expressed

0 01 0 01 0 0001 0 01 2 Continuing this pattern we see that 1 0 01 0 0001 can be expressed as the geometric series 00 0 01 n 1 Step 4 Recall the following theorem For the sum n 1 00 0 01 The geometric series n 1 n 1 0 01 1 1 0 01 1 1 ar 1 a ar ar is convergent if r 1 and its sum is we have a 1 Submit Skip you cannot come back n 1 ar 1 a and r 0 01 1 Therefore we have the following 1 r r 1

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!