Question: 1. [20 Points] Develop a polynomial (any order you choose) regression model for the data given in Probleml-exam1-2017.xls. Use the data in training dataset (Training

1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order1. [20 Points] Develop a polynomial (any order

1. [20 Points] Develop a polynomial (any order you choose) regression model for the data given in Probleml-exam1-2017.xls. Use the data in training dataset (Training worksheet) for fitting the polynomial. a. Show the model and RMS error in the fit (RMS error is the cumulative root mean square of the pointwise error between the model and training data set) b. Find the RMS error in modeling the testing dataset (Testing worksheet) when you use the model determined in (a). 0.2 0.01 0.231895 0.02 0.264667 0.03 0.298191 0.04 0.332345 0.05 0.367008 0.06 0.402062 0.07 0.43739 0.08 0.472877 0.09 0.508413 0.1 0.543893 0.11 0.579212 0.12 0.614274 0.13 0.648984 0.14 0.683257 0.15 0.717008 0.16 0.750164 0.17 0.782653 0.18 0.814414 0.19 0.845388 0.2 0.875528 0.21 0.904792 0.22 0.933144 0.23 0.960557 0.24 0.987013 0.251.0125 0.26 1.037013 0.27 1.060557 0.28 1.083144 0.29 1,104792 o3 1 125528 Training Dataset 31 | 4 0.3 1.125528 0.31 1.145388 0.32 1.164414 0.33 1.182653 0.34 1.200164 0.35 1.217008 0.36 1.233257 0.37 1.248984 0.38 1.264274 0.39 1.279212 0.4 1.293893 0.41 1.308413 0.42 1.322877 0.43 1.33739 0.44 1.352062 0.45 1.367008 0.46 1.382345 0.47 1.398191 0.48 1.414667 0.49 1.431895 0.5 1.45 0.51 1.469105 0.52 1.489333 0.53 1.510809 0.54 1.533655 0.55 1.557992 0.56 1.583938 0.57 1.61161 0.58 1.641123 0.59 1.672587 A B 0.6 1.706107 0.61 1.741788 0.62 1.779726 0.63 1.820016 0.64 1.862743 0.65 1.907992 0.66 1.955836 0.67 2.006347 0.68 2.059586 0.69 2.115612 0.7 2.174472 0.71 2.236208 0.72 2.300856 0.73 2.368443 0.74 2.438987 0.75 2.5125 0.76 2.588987 0.77 2.668443 0.78 2.750856 0.79 2.836208 0.8 2.924472 0.81 3.015612 0.82 3.109586 0.83 3.206347 0.84 3.305836 0.85 3.407992 0.86 3.512743 0.87 3.620016 0.88 3.729726 0.89 3.841788 093956107 Training Dataset 90 91 A B 0.9 3.956107 0.91 4.072587 0.92 4.191123 0.93 4.31161 0.94 4.433938 0.95 4.557992 0.96 4.683655 0.97 4.810809 0.98 4.939333 0.99 5.069105 5.2 Training Dataset ITB 1 X Y* 0 0.2 0.01 0.2005 0.02 0.202 0.03 0.2045 0.04 0.208 0.05 0.2125 0.06 0.218 0.07 0.2245 0.08 0.232 0.09 0.2405 0.1 0.25 0.11 0.2605 0.12 0.272 0.13 0.2845 0.14 0.298 0.15 0.3125 0.16 0.328 0.17 0.3445 0.18 0.362 0.19 0.3805 0.2 0.4 0.21 0.4205 0.22 0.442 0.23 0.4645 0.24 0.488 0.25 0.5125 0.26 0.538 0.27 0.5645 0.28 0.592 31 0 29 06205 Testing Dataset 0.29 0.6205 0.3 0.65 0.31 0.6805 0.32 0.712 0.33 0.7445 0.340.778 0.35 0.8125 0.36 0.848 0.37 0.8845 0.38 0.922 0.39 0.9605 0.4 0.411.0405 0.42 1.082 0.43 1.1245 0.44 1.168 0.45 1.2125 0.46 1.258 0.47 1.3045 0.48 1.352 0.49 1.4005 0.5 1.45 0.511.5005 0.52 1.552 0.53 1.6045 0.54 1.658 0.55 1.7125 0.56 1.768 0.57 1.8245 0.58 1.882 159 19405 Testing Dataset 61 0.59 1.9405 0.6 0.61 2.0605 0.62 2.122 0.63 2.1845 0.64 2.248 0.65 2.3125 0.66 2.378 0.67 2.4445 0.68 2.512 0.69 2.5805 0.7 2.65 0.71 2.7205 0.72 2.792 0.73 2.8645 0.74 2.938 0.75 3.0125 0.76 3.088 0.77 3.1645 0.78 3.242 0.79 3.3205 0.8 3.4 0.81 3.4805 0.82 3.562 0.83 3.6445 0.84 3.728 0.85 3.8125 0.86 3.898 0.87 3.9845 0.88 4.072 0894 1605 Testing Dataset A B 0.89 0.9 0.91 0.92 0.93 0.94 4.1605 4.25 4.3405 4.432 4.5245 4.618 4.7125 4.808 4.9045 5.002 5.1005 5.2 0.95 0.96 0.97 0.98 0.99 1 Testing Dataset 1. [20 Points] Develop a polynomial (any order you choose) regression model for the data given in Probleml-exam1-2017.xls. Use the data in training dataset (Training worksheet) for fitting the polynomial. a. Show the model and RMS error in the fit (RMS error is the cumulative root mean square of the pointwise error between the model and training data set) b. Find the RMS error in modeling the testing dataset (Testing worksheet) when you use the model determined in (a). 0.2 0.01 0.231895 0.02 0.264667 0.03 0.298191 0.04 0.332345 0.05 0.367008 0.06 0.402062 0.07 0.43739 0.08 0.472877 0.09 0.508413 0.1 0.543893 0.11 0.579212 0.12 0.614274 0.13 0.648984 0.14 0.683257 0.15 0.717008 0.16 0.750164 0.17 0.782653 0.18 0.814414 0.19 0.845388 0.2 0.875528 0.21 0.904792 0.22 0.933144 0.23 0.960557 0.24 0.987013 0.251.0125 0.26 1.037013 0.27 1.060557 0.28 1.083144 0.29 1,104792 o3 1 125528 Training Dataset 31 | 4 0.3 1.125528 0.31 1.145388 0.32 1.164414 0.33 1.182653 0.34 1.200164 0.35 1.217008 0.36 1.233257 0.37 1.248984 0.38 1.264274 0.39 1.279212 0.4 1.293893 0.41 1.308413 0.42 1.322877 0.43 1.33739 0.44 1.352062 0.45 1.367008 0.46 1.382345 0.47 1.398191 0.48 1.414667 0.49 1.431895 0.5 1.45 0.51 1.469105 0.52 1.489333 0.53 1.510809 0.54 1.533655 0.55 1.557992 0.56 1.583938 0.57 1.61161 0.58 1.641123 0.59 1.672587 A B 0.6 1.706107 0.61 1.741788 0.62 1.779726 0.63 1.820016 0.64 1.862743 0.65 1.907992 0.66 1.955836 0.67 2.006347 0.68 2.059586 0.69 2.115612 0.7 2.174472 0.71 2.236208 0.72 2.300856 0.73 2.368443 0.74 2.438987 0.75 2.5125 0.76 2.588987 0.77 2.668443 0.78 2.750856 0.79 2.836208 0.8 2.924472 0.81 3.015612 0.82 3.109586 0.83 3.206347 0.84 3.305836 0.85 3.407992 0.86 3.512743 0.87 3.620016 0.88 3.729726 0.89 3.841788 093956107 Training Dataset 90 91 A B 0.9 3.956107 0.91 4.072587 0.92 4.191123 0.93 4.31161 0.94 4.433938 0.95 4.557992 0.96 4.683655 0.97 4.810809 0.98 4.939333 0.99 5.069105 5.2 Training Dataset ITB 1 X Y* 0 0.2 0.01 0.2005 0.02 0.202 0.03 0.2045 0.04 0.208 0.05 0.2125 0.06 0.218 0.07 0.2245 0.08 0.232 0.09 0.2405 0.1 0.25 0.11 0.2605 0.12 0.272 0.13 0.2845 0.14 0.298 0.15 0.3125 0.16 0.328 0.17 0.3445 0.18 0.362 0.19 0.3805 0.2 0.4 0.21 0.4205 0.22 0.442 0.23 0.4645 0.24 0.488 0.25 0.5125 0.26 0.538 0.27 0.5645 0.28 0.592 31 0 29 06205 Testing Dataset 0.29 0.6205 0.3 0.65 0.31 0.6805 0.32 0.712 0.33 0.7445 0.340.778 0.35 0.8125 0.36 0.848 0.37 0.8845 0.38 0.922 0.39 0.9605 0.4 0.411.0405 0.42 1.082 0.43 1.1245 0.44 1.168 0.45 1.2125 0.46 1.258 0.47 1.3045 0.48 1.352 0.49 1.4005 0.5 1.45 0.511.5005 0.52 1.552 0.53 1.6045 0.54 1.658 0.55 1.7125 0.56 1.768 0.57 1.8245 0.58 1.882 159 19405 Testing Dataset 61 0.59 1.9405 0.6 0.61 2.0605 0.62 2.122 0.63 2.1845 0.64 2.248 0.65 2.3125 0.66 2.378 0.67 2.4445 0.68 2.512 0.69 2.5805 0.7 2.65 0.71 2.7205 0.72 2.792 0.73 2.8645 0.74 2.938 0.75 3.0125 0.76 3.088 0.77 3.1645 0.78 3.242 0.79 3.3205 0.8 3.4 0.81 3.4805 0.82 3.562 0.83 3.6445 0.84 3.728 0.85 3.8125 0.86 3.898 0.87 3.9845 0.88 4.072 0894 1605 Testing Dataset A B 0.89 0.9 0.91 0.92 0.93 0.94 4.1605 4.25 4.3405 4.432 4.5245 4.618 4.7125 4.808 4.9045 5.002 5.1005 5.2 0.95 0.96 0.97 0.98 0.99 1 Testing Dataset

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!