Question: 1) Determine the intervals that the function is increasing, decreasing for the function f(x) = (x- 2)^2 2) Determine the vertex and any relative minimum/maximum
1) Determine the intervals that the function is increasing, decreasing for the function f(x) = (x- 2)^2
2) Determine the vertex and any relative minimum/maximum for the functionf(x) = 2x^2-8x + 13
3) Determine if the graph opens up or down and explain why for the functionf(x) = l x-5 l +3
4) Find (fg) (4) given:f(x) = 2x^2 - 3, and g(x) = 5x - 2
5) Find (k/m)(3) given:k(x) = x^3 - 2, and m(x) = x-3
6) Find the domain for(f + g)(x) given:f(x) = x+3/x+2 , g(x) = x-1
7) Find : f(x+h) -f (x)/ h Given f(x)= 5x-3
8) Find (G o H)(3) given:G(x) = 3x^2 -2x + 5 , and H(x) = 4x -2
9) Find (G o G) (3) given:G(x) = 2x ^2 -4x + 1
10) Find the Domain for (F o G)(x) given:F(x) = 1/x and G(x)= x+1/ x+2
11) Find f(x) and g(x) such that h(x) = (f o g)(x) given:h(x) =( x-2)^3
12) Determine if the graph is symmetric to the x axis, y axis, origin or none for y = x^2 +3
13) Determine if the graph is symmetric to the x axis, y axis, origin or none fory= l 2x l +3
14) Find the ordered pairs that are symmetric to the x axis, y axis, and origin given:(-2, 5)
15) Determine if the function is even, odd, or neither given: f(x) = x+1/x
16) Find (f - g) (3) given:f(x) = 2x^2 - 3, and g(x) = 5x - 2
17) Find (f o g) (5) given: f(x) = 2x^2 - 4x, and g(x) = 3x -6
18) Determine if the function is even, odd, or neither given:f(x) = 7x^3 + 4x - 2
19) Determine if the function is even, odd, or neither given: f(x) = ^3x
20) Determine the domain for f(x) = x+3
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
