Question: 1.) Let X be a continuous random variable uniformly distributed on the interval [4,7]. let x be point within [4,7]. Use this info to solve
1.) Let X be a continuous random variable uniformly distributed on the interval [4,7]. let x be point within [4,7]. Use this info to solve parts a-b. Please be sure to also solve parts c-e, but parts c-e are independent questions.
a.) Compute the probability that the above random variable X takes values between 8.5 and 12.5.
b.) Compute the probability that the above random variable takes values between 3.5 and 6.5.
Solve part c-e
c.) Consider the following real function defined on the whole real line:
f(x)=cx^4, for x in [0,2], and 0 otherwise.
Find c such that this function represents the density of a random variable X.
d.) Consider a random variable X whose density is:
f(x) = ax + bx^2 for x in [0,1], and 0 otherwise. If E[X]=.6, find a and b.
e.) For the above X find P(X<1>
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
