Question: 1. Run a multiple multinomial logistic regression. The outcome can be truly unordered or simply ordinal. Tell me how you think your independent variables will

1. Run a multiple multinomial logistic regression. The outcome can be truly unordered or simply ordinal. Tell me how you think your independent variables will be related to your dependent variable. Interpret your results. Compare coefficients on your X variable of interest (not all of them) across different cuts of the multinomial outcomes, as we did in class (i.e., the Z test). For extra credit, generate some predicted probabilities. Tell me what you learned about your hypothesized relationship(s) from this exercise. gss = read.csv(file.choose()) ## choose GSS.2006.csv ##install.packages("mlogit") library(mlogit) table(gss$natchld) gss$rnatchld = 4-gss$natchld gss2 = mlogit.data(gss, varying=NULL, choice="rnatchld", shape="wide") ## testing the grey peril hypothesis ## ml1 = mlogit(rnatchld ~ 1 | age + educ + sex + prestg80 + as.factor(region), data=gss2, reflevel="2") summary(ml1) test = ((0.01872522-0.00445479)^2)/(0.00472158^2 + 0.00259763^2) test pchisq(test, df = 1, lower.tail = FALSE) ## add in children ## ml2 = mlogit(rnatchld ~ 1 | age + childs + educ + sex as.factor(region), data=gss2, reflevel="2") summary(ml2) + prestg80 + test2 = (( 0.01692479-0.00632173)^2)/(0.00507468^2 + 0.00281551^2) test2 pchisq(test2, df = 1, lower.tail = FALSE) ## interact children with age ## ml3 = mlogit(rnatchld ~ 1 | age*childs + educ + sex as.factor(region), data=gss2, reflevel="2") summary(ml2) + prestg80 + ## install.packages("nnet") library(nnet) gss$ncok <- relevel(as.factor(gss$rnatchld), ref = 2) ## same as above ## mult1 = multinom(ncok ~ age + educ + sex + prestg80 + as.factor(region), data=gss) summary(mult1) z1 <- summary(mult1)$coefficients/summary(mult1)$standard.errors z1 options(scipen=999) ## if you want to revert back, use options(scipen=0) p1 <- (1 - pnorm(abs(z1), 0, 1))*2 p1 pred1 <- predict(mult1, type = "probs") head(pred1) ## overall probabilities # data frame of values to use for predictions data.child <- expand.grid( age = 20:95, # let age vary from 20 to 95 region = 3, # set region to east north central sex = 1, # fix sex as male prestg80 = mean(gss$prestg80,na.rm=T), # fix realinc at its mean educ = mean(gss$prestg80,na.rm=T)) # fix realinc at its mean # combine age and predicted probabilities in a data frame preds.child <- data.frame( age = data.child$age, # polviews predict(mult1, newdata = data.child, type = "probs", se = TRUE)) # predicted probabilities ## install.packages("plyr") library(plyr) # avg predicted probabilities for each level of age ddply(preds.child, "age", colMeans) table(gss$rnatchld) ## sanity check, small-medium-large in precentages

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!