Question: 10.3 sample data from those 228 measurements resulted in a sample mean of 98.5F and a sample standard deviation of 1.2 F. Use the P-value
10.3

sample data from those 228 measurements resulted in a sample mean of 98.5"F and a sample standard deviation of 1.2 F. Use the P-value approach to conduct . Print hypothesis test to judge whether the mean temperature of humans is less than 98.6 F at the a = 0.05 level of significance. Click the icon to view the table of critical t-values. State the null and alternative hypotheses. Ho: (1) (2) H1: (3 ) (4) Type integers or decimals. Do not round.) Identify the test statistic. to = (Round to two decimal places as needed.) Approximate the P-value. The P-value is in the range (5) Make a conclusion regarding the hypothesis. (6) the null hypothesis. There (7) sufficient evidence to claim that the mean temperature of humans is (8) (Type an integer or a decimal. Do not round.) 8: Table of Critical t-Values -Area in right tail [-Distribution Area in Right Tail df 0.25 0.20 0.15 0.10 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 0.0005 df 1.000 1.376 1.963 3.078 6.314 12.706 15.894 31.82 63.657 127.321 318.309 636.619 1.386 4.303 4.849 6.965 9.925 14.089 22.327 31.599 0.816 1.061 1.886 2-240 10.215 0.765 0.978 1.250 1.638 2.35. 3.18 3.482 4.541 5.841 7.453 12.92 UIAWN 7.173 0.741 0.941 1.190 1.533 2.132 240 2.999 3.747 4.604 5.598 8.610 5.893 0.727 0.920 1.156 1.476 2 015 2.571 2.757 3 365 4 032 4.773 6.869 CONVO HAWN 0.718 0.906 1.134 1.440 1.943 2 447 2.612 3.143 3.707 4.317 5.208 5.959 0.711 0.896 1.119 1.415 1.895 2 365 2517 2.998 3.499 4.029 4.785 5.408 1.108 1.397 1.860 2.306 2 449 2.896 3.355 3.833 4.501 5,041 0.706 0.889 0.703 0.883 1.100 1383 1.833 2 262 2 398 2.821 3.250 3.690 4.297 4.781 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.58 4.144 4.587 11 0.697 0.876 1.088 .363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318 4.221 13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140 14 2 947 3.286 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 3.733 4.073 1.015 16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2 921 3.252 3.686 333 1.740 2.110 2 224 2.567 2.898 3222 17 3.965 0.689 0.863 1.069 3.646 2.101 2.214 2552 2.878 3.197 3.610 3.922 18 0.688 0.862 1.067 1.330 1.734 19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.561 3.174 3.579 3.883 20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.55 3.850 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792 0.858 1.060 1.319 1.714 2.069 2.177 500 2.807 3.104 3.485 3.76 0.685 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745 0.685 0.857 1.059 1.318 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725 0.684 0.85 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707 0.684 0.855 1.057 314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646 1.054 1.309 1.696 2.040 2.144 2.453 2.74 3.022 3.375 3.633 31 0.682 0.853 0.682 0.853 1.054 1.309 1.694 2.037 2.141 2.449 2.738 3.015 3.365 3.622 1.692 2.035 2.138 2.445 2.733 3.008 3.356 3.611 0.682 0.853 1.053 1.308 34 0.682 0.852 1.052 1.307 1.691 2.032 2.136 2.441 2.728 3.002 3.348 3.601 34 35 0.682 0.852 1 052 1306 1 690 2.030 2.133 2 438 2.724 2.996 3.340 3.591 36 0.681 0.852 1.052 306 1.688 2.028 2.131 2.434 2.719 2990 3.333 3.58 37 0.681 0.851 1.051 1305 1.687 2.026 2.129 2.431 2.715 2985 3.326 3.574 1.051 1.304 1.686 2.024 2.127 2.429 2.712 2.980 3.319 3.566 38 0.681 0.851 39 1.050 2.023 2.976 3.313 3.558 0.681 0.851 1.304 1.685 2.125 2.426 2.708 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.551 40 0.681 0.851 3.307 50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460 0.847 1.044 1.294 1.667 1.994 2.093 2.381 2.648 2.899 3.211 3.435 0.678 0.67 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416 90 3.402 0.677 0.846 1.042 1.291 1.662 1.987 2.084 2.368 2.632 2.878 3.183 100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2871 3.174 3.390 100 3.300 1000 000 1.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2813 3.098 0.674 0.842 1.036 1282 1.645 1 960 2 054 2 326 2.576 2.807 3.090 3.291 df 0.2 0.20 0.15 0.10 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 0.0005 df (1) Ox (3) OH (4) 0 > (5) O P-value 0.10. (8) O greater than different from less than equal to Calcium is essential to tree growth. In 1990, the concentration of calcium in precipitation in Chautauqua, New York, was 0.11 milligram per liter mo A random sample of 8 precipitation dates in 2018 results in the following data: 0.126 0.087 0.313 0.183 0.070 0. 108 0.120 0.262 A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot does not show any outliers. Does the sample evidence suggest that calcium concentrations have changed since 1990? Use the a = 0.01 level of significance. What are the null and alternative hypotheses? Ho : (1 ) Hy : (3 ) (4) (Type integers or decimals. Do not round.) Find the test statistic. to = (Round to two decimal places as needed.) Find the P-value
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
